If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-22=0
a = 1; b = 20; c = -22;
Δ = b2-4ac
Δ = 202-4·1·(-22)
Δ = 488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{488}=\sqrt{4*122}=\sqrt{4}*\sqrt{122}=2\sqrt{122}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{122}}{2*1}=\frac{-20-2\sqrt{122}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{122}}{2*1}=\frac{-20+2\sqrt{122}}{2} $
| 6-3(8n-4)=-150 | | -6(8r+2)=-252 | | 105=-5(-5-2x) | | 13=3p−5 | | 39-x=23 | | (3x-9)(-4x+16)=0 | | -6r-8(1+6r)=-116 | | 9b^2^=4 | | 210=7(-4m+6) | | 7(2m-7)=-119 | | .25x=2500+.05x | | 4x=68x | | -90=-8x-3(x+8) | | 6=x/11+2 | | 104=8(4x+5) | | -6(6a-2)=84 | | 3x=1080×25 | | -9(x+6)=-207-9(x+6)=-207 | | 3(7n+2)-5n=118 | | 8x+4(1.5x)=300 | | 8+4(1.5x)=300 | | 3x^2+72x=0 | | 3x+((5-4x)^(1/2))=2 | | O.5x+7=3x-8 | | .3x=15000+.05x | | 3+4a1 =31 | | .3x=15000+.03x | | C/5+b=9 | | .25x=5000+.05x | | .25x=5000+.08x | | .25x=5000+.1x | | .2x=2500+.1x |